
Chapter 6.5. VHDL Design

What does HDL stand for?

HDL is short for Hardware Description Language

(VHDL – VHSIC Hardware Description Language)
(Very High Speed Integrated Circuit)(y g p g)

What’s VHDL?
VHDL is a programming language for describing digital
system behavior and structure. It can be used to
describe, model and design digital systems.
VHDL is a industry standard language used to describe

fhardware from the abstract to the concrete level.
Originally intended for simulation, modeling and
d t tidocumentation
Later also used for synthesis
O i i ll ti htl t d ith US D D b tOriginally tightly connected with US DoD, but soon
found its way to non-military applications
First standard in 1987 revised in 1993First standard in 1987, revised in 1993.

The World Before VHDL
Polygon pushing
Transistor level designTransistor level design
Boolean design

One equation for each FF data input
Schematic Design

Allow use of blocks in addition to FFs and gates.
I ti l f l d iImpractical for large designs

HDL Design, used for
Requirement specificationRequirement specification
Documentation
Testing using simulation
Verification of correctness before manufacturing
Synthesizing digital circuits: implementation at
R i t T f L l N tli t f l tRegister Transfer Level → Netlist of elements

Why VHDL?
“Universal” Language proposed by USA DoD
IEEE standard
Wide ind str acceptanceWide industry acceptance
Supports different methodologies
Supports different technologiesSupports different technologies
Supports technology-independent abstract models
Helps component re-use
Self-documenting
Many tools available

Design Flow

VHDL Design: Entity + Architecture Entities and Architectures
The minimum VHDL design description must include at

least one entity and its bounded architecture.

But VHDL allows the designer to create different alternate g
architectures for each entity

It provides the interface for the circuitIt provides the interface for the circuit
It does not include the actual circuit behavior
It allows to connect the circuit into higher level circuits
VHDL is case-insensitive. It is always related to one entity;

It describes the behavior or the structure of the circuit
For each entity it is possible to have more than oneFor each entity, it is possible to have more than one
architecture.

VHDL Design Unitsg
Entity: specifies the interface of the system with the
environmentenvironment.
Architecture: description of the internal part of the
system, specifies how the inputs are transformed into
outputs.
Process: Concurrency, event controlled
C fi tiConfiguration

used to combine a component instance to an entity-
architecture pairarchitecture pair.

Package
Encapsulate elements that can be shared globally
among design units.

Library: Compilation, object code

EntityEntity
Interface description :

Defines connections (ports) that transfer informationDefines connections (ports) that transfer information
to and from the system.
Defines port types : IN OUT INOUTDefines port types : IN, OUT, INOUT
Architecture only allowed to read IN ports, or write to
OUT ports. INOUT ports can be read or written to.OUT ports. INOUT ports can be read or written to.

e.g.

ff
Set q

ENTITY rsff IS
PORT (set, reset : IN BIT;

q,qb : INOUT BIT);
Reset qb

q,qb : INOUT BIT);
END rsff;

RSFF

Entity Declaration

entity NAME_OF_ENTITY is
port (signal_names: mode type;

signal_names: mode type;
::

signal_names: mode type);
end [NAME_OF_ENTITY] ;

NAME_OF_ENTITY: user defined
signal_names: list of signals (both input g _ g (p
and output)
mode: in, out, buffer, inout
type: boolean integer charactertype: boolean, integer, character,
std_logic

Architecture
Implementation of the design :

All entities have one or more architectureAll entities have one or more architecture
Describes the functionality of the system.
Always connected with a specific entityAlways connected with a specific entity
entity ports are available as signals within the architecture
The description can be structural or behavioralThe description can be structural or behavioral.
Structural : Specifies which sub-components are used
and how they are connected.
Behavioral : Specifies what the system does, describes
the outputs’ responses to the inputs’ changes.

Architecture for Entity
D ib i l t ti f titDescribes an implementation of an entity
May be several per entity
Contains concurrent statements

architecture Behav of Reg4 is
component Reg1
port (...); additionalp ();

end component;
signal s1,s2 : std_logic;

begin

declarative part additional
signals

g
s1 <= s2;
...

end Behav;

definition part concurrent
statements

Structural: describe the design as combination of building blocks
Behavioral: describe algorithm/function of the design/module
Mi d l d b h i lMixed structural and behavioral

Example: Register Transfer Level (RTL) modeling
Data path described structurally
Control section described behaviorally

Architecture: Behavioral
Declarative part:

data types
constants architecture EXAMPLE of STRUCTURE isconstants
additional signals
("actual" signals)

subtype DIGIT is integer range 0 to 9;
constant BASE: integer := 10;
signal DIGIT_A, DIGIT_B: DIGIT;

components
...

D fi iti t (ft

signal CARRY: DIGIT;
begin

DIGIT_A <= 3;
Definition part (after

'begin'):
signal assignments

SUM <= DIGIT_A + DIGIT_B;
DIGIT_B <= 7;
CARRY <= 0 when SUM < BASE else 1;g g

processes
component
instantiations

end EXAMPLE ;

instantiations
concurrent
statements:
order not important

Behavioral Architecture Examplese a o a c ec u e a p es

entity compare is
port(A,B: in std_logic_vector(7 downto 0);

EQ: out std_logic);
end compare;

entity rotate is
port(Clk, Rst, Load: in std_logic;
Data: in std_logic_vector(7 downto 0);
Q: out std_logic_vector(7 downto 0));

architecture compare1 of compare is
begin
EQ <= '1' when (A = B) else '0';

end compare1;

end rotate;

architecture rotate1 of rotate is
begin
reg: process(Rst,Clk) p ; g p (,)
variable Qreg:std_logic_vector(7 downto 0);
begin

if Rst = '1' then
--Async reset

Qreg := "00000000";Qreg := 00000000 ;
elsif (Clk = '1' and Clk'event) then

if (Load = '1') then Qreg := Data;
else Qreg:=Qreg(0) & Qreg(7 downto 1);

end if;
d ifend if;

Q <= Qreg;
end process;

end rotate1;

Architecture: Structural
A purely structural architecture does not describe any functionality

and contains just a list of components, their instantiation and the
definition of their interconnectionsdefinition of their interconnections.

module 1 module 2

mux

module 3

Structural Architecture: Example
In declarative part of architecture.

tit FULLADDER ientity FULLADDER is
port (A,B, CARRY_IN: in bit;

SUM, CARRY: out bit);
end FULLADDER;

architecture STRUCT of FULLADDER is
signal W_SUM, W_CARRY1, W_CARRY2 : bit;

component HALFADDER
port (A, B : in bit;

SUM, CARRY : out bit);
end component;p ;

component ORGATE
port (A, B : in bit;

RES : out bit););
end component;

begin

Structural Architectures- Instantiation
Instantiation in definition part of architecture
(after 'begin')(g)

begin
MODULE1: HALFADDER
port map(A, B, W_SUM, W_CARRY1);

Port Association
Two methods of port association are
available:available:
Positional port association

t (A B C E)e.g. port map(A,B,C,open,E);
order is critical

Named port association
e.g port map:

(Sum=>S, Carry=>open, IN1=>X, IN2=>Y);
left side: "formals"
(t f t d l ti)(port names from component declaration)
right side: "actual“ (architecture signals)

I d d t f d i t d l tiIndependent of order in component declaration

Mixed Behavior and Structure
An architecture can contain both
behavioral and structural parts

process statements and

multiplier multiplicand

process statements and
component instances

collectively called concurrent
t t t

shift_reg

statements
processes can read and assign
to signals

shift_
adder

control_
section

Example: register-transfer-level
model

data path described structurally
reg

p y
control section described
behaviorally

product

Mixed Examplep
entity multiplier is

port (clk, reset : in bit;p (, ;
multiplicand, multiplier : in integer;
product : out integer);

end entity multiplier;

architecture mixed of mulitplier is
signal partial_product, full_product : integer;g p _p _p g
signal arith_control, result_en, mult_bit, mult_load : bit;

begin
arith unit : entity work shift adder(behavior)arith_unit : entity work.shift_adder(behavior)

port map (addend => multiplicand, augend => full_product,
sum => partial_product,
add control => arith control);add_co t o a t _co t o);

result : entity work.reg(behavior)
port map (d => partial_product, q => full_product,

en => result en, reset => reset);en result_en, reset reset);
...

Mixed Example
…
multiplier sr : entity work shift reg(behavior)multiplier_sr : entity work.shift_reg(behavior)

port map (d => multiplier, q => mult_bit,
load => mult_load, clk => clk);

product <= full product;product < full_product;

control_section : process is
-- variable declarations for control_section
-- …

begin
-- sequential statements to assign values to control signals
-- …
wait on clk, reset;

end process control_section;
d hit t i dend architecture mixed;

Data Types
Like a high-level software programming language VHDLLike a high-level software programming language, VHDL

supports different data types.
Data types allow the user to represent

hi h l l d t (l i t t i)- high-level data (real, integer, string, …)
- values got by individual wires in a circuit
Every data type can get a defined set of values.e y da a ype ca ge a de ed se o a ues
VHDL is strongly-typed: strong restrictions on how operations

involving different data-types can be intermixed.

VHDL Data Typesy

Bit Integer
'0' or '1'

Bit Vector

g
Real
CharacterBit_Vector

"00", "01", "10", ...
Boolean

Character
'a', 'b', '1', '2', ...

E ti TBoolean
FALSE or TRUE

Ti

Enumeration Type
User defined

Time
integer with units
fs, ps, ns, us, ms,
...

Data Types
Two main data types are:
Scalar Types

i t l t dinteger, real, enumerated
e.g. type byte is range 255 downto 0;
type colors is (red green yellow); -type colors is (red, green, yellow); -
(enumerated data type)

Composite Typesp yp
arrays and records

arrays : regular structures consisting of
l t f telements of same type

user may define his own arrays or
use some predefined arrays e g bit vectoruse some predefined arrays e.g. bit_vector,
string
Records: values of different types

Definition of Arrays

Collection of signals of the same type
Predefined arrays :Predefined arrays :

bit_vector (array of bit)
string (array of character)

bus_A(3)

b A(2)

bus_B(0)
string (array of character)
Example:

signal bus A : bit vector(3 downto 0);

bus_A(2)

bus_A(1)

bus_B(1)

bus_B(2)g _ _ ();
Signal bus_B: bit_vector(0 to 3);
bus_A <= bus_B

bus_A(0) bus_B(3)

Types of Assignment for 'bit' Data Types

Single bit values are enclosed in '.'
Vector values are enclosed in "..."
optional base specification (default: binary)
values may be separated by underscores to
improve readability

signal BUS_A : bit_vector (3 downto 0);

BUS_A(3) <= ‘1’;

BUS A < “0011”BUS_A <= “0011”;

BUS_A<=x”C”

Data TypeData Type

VHDL Operators
Logical

and or nand nor

Unary Sign
+ -and, or, nand, nor,

xor
Relational

+,
Multiplication

* / mod remRelational
=, /=, <, <=, >, >=

Shift

*, /, mod, rem
Miscellaneous

Shift
sll, srl, sla, sra, rol,

not, abs, **
…and other more complex
f ti i l d d iror

Addition
functions included in
libraries IEEE standard
logic 1164 and IEEE

+, -
Concatenation

logic 1164 and IEEE
standard logic arithmetic.

&

VHDL Operators
“A+B” means “A add B” (A B: integers bits or bit-vectors etc)A+B means A add B (A, B: integers, bits or bit-vectors, etc.).

If you want logical “OR” operation, you should use “A or B”.
“A*B” means “A multiply B” (A, B: integers, bits or bit-vectors,

priority

p y (g
etc.). If you want logical “AND” operation, use “A and B”.

Expression consist of operands and operators. Following is a list
f VHDL t

logical not
priorityof VHDL operators:

And or Nand nor xor Xnor
relational = /= < <= > >=relational = /= < <= > >=
shift Sll srl Sla sra rol ror
arithmetic + -

* / mod rem ** abs/ mod rem abs

Concatenation operator: &

The concatenation operator '&' is allowed on the right
side of the signal assignment operator '<=' onlyside of the signal assignment operator <= , only.

architecture CLASS1 of CONCAT isarchitecture CLASS1 of CONCAT is
signal BYTE : bit_vector (7 downto 0);
signal A_BUS, B_BUS : bit_vector (3 downto 0);

beginbegin

BYTE <= A_BUS & B_BUS;_ _

end CLASS1;

Combinational Logic

entity ADD is
port (A, B : in std logic vector(7 downto 0);port (A, B : in std_logic_vector(7 downto 0);

Z : out std_logic_vector (15 downto 0));
end ADD;

architecture ARITHMETIC of ADD is
begin

Z <= A + B;
end ARITHMETIC;

A

+

B

Z

VHDL Modules
Sequential Logic

A general term regarding design containing flip-flops, i.e.
clocked
Explicit reset is necessary to guarantee the design duringExplicit reset is necessary to guarantee the design during
power-up

process (CLK,RESET)process (CLK,RESET)
begin
if (RESET = `1`) then

DATA <= `0` ;
` ` `

INPUT DATA

elsif (CLK`event and CLK=`1`) then
DATA <= INPUT ;

end if ;
end process ;

CLK

RESETend process ;

RTL: Combinational Logic and Registersg g
Signal assignments in clocked processes infer flip-flops

LOGIC_A: process
b ibegin
wait until CLK`event and CLK=`1`;
-- Logic A

end process LOGIC A;p _ ;

LOGIC_B: process (ST)
begin

L i B

LOGIC_BLOGIC_A
ST

-- Logic B
end process LOGIC_B; CLK

logic + flip-flops purely combinational logic

Half Addera dde

library ieee;
use ieee.std_logic_1164.all;
entity half_adder is

t(port(
x,y: in std_logic;
sum, carry: out std_logic);

end half adder;end half_adder;

architecture myadd of half_adder is
beginbegin

sum <= x xor y;
carry <= x and y;

end myadd;end myadd;

Full Adder (Dataflow)Full Adder (Dataflow)

architecture Dataflow of FullAdder is

begin -- concurrent assignment statements

Sum <= X xor Y xor Cin after 2 ns;

Cout <= (X and Y) or (X and Cin) or (Y and Cin)
after 2 nsafter 2 ns;

end Dataflow;

4-bit Ripple-Carry Adderpp y

entity Adder4 is

port(A, B: in bit_vector(3 downto 0);

Ci: in bit;Ci: in bit;

S: out bit_vector(3 downto 0);

Co: out bit);

end Adder4;

4-bit Adder (Structural)4-bit Adder (Structural)
architecture Structure of Adder4 isarchitecture Structure of Adder4 is

component FullAdder

port(X, Y, Cin: in bit; -- Inputs

Cout, Sum: out bit); -- Outputs

end component;

signal C: bit_vector(3 downto 1); -- internal signal

begin --instantiate four copies of the FullAdder

FA0: FullAdder port map(A(0) B(0) Ci C(1) S(0));FA0: FullAdder port map(A(0),B(0),Ci,C(1),S(0));

FA1: FullAdder port map(A(1),B(1),C(1),C(2),S(1));

FA2: FullAdder port map(A(2),B(2),C(2),C(3),S(2));

FA3: FullAdder port map(A(3),B(3),C(3),Co,S(3));

end Structure;

ModelSim VHDL Simulation #1:
Based on Commands (*.do file)

Simulator CommandsSimulator Commands

add list A B Ci S Co C

force A 0011

force B 0010

force Ci 0force Ci 0

run 10 ns

force B 1110

run 10 ns

ModelSim VHDL Simulation
(Waveforms)

ModelSim VHDL Simulation #2: Based
T t B hon Test Benches

Testing a design by simulation
Use a test bench modelUse a test bench model

an architecture body that includes an
instance of the design under testinstance of the design under test
applies sequences of test values to inputs
monitors values on output signals

either using simulator
or with a process that verifies correct operation

Test Bench Example
entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is
signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

beginbegin
dut : entity work.reg4(behav)

port map (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);
stimulus : process isstimulus : process is
begin

d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;
en <= ’0’; clk <= ’0’; wait for 20 ns;
en <= ’1’; wait for 20 ns;
clk <= ’1’; wait for 20 ns;
d0 <= ’0’; d1 <= ’0’; d2 <= ’0’; d3 <= ’0’; wait for 20 ns;

’0’ it f 20en <= ’0’; wait for 20 ns;
…
wait;

end process stimulus;end process stimulus;
end architecture test_reg4;

4-bit Adder Test Bench4 bit Adder Test Bench

418_02 47

4-bit Adder Test Bench
entity TestAdder4 is

end TestAdder4;

architecture Test of TestAdder4 is

component Adder4

port(A, B: in bit_vector(3 downto 0); Ci: in
bit;

S: out bit_vector(3 downto 0); Co: out
bit););

end component;

signal addend, augend, sum: bit_vector(3 downto
0);

signal cin cout: bit;signal cin, cout: bit;

4-bit Adder Test Bench
constant N: integer := 6;

type bv_arr is array(1 to N) of

bit t (3 d t 0)bit_vector(3 downto 0);

type bit_arr is array(1 to N) of bit;

constant addend array: bv arr := co sta t adde d_a ay: b _a :

("0011", "0011", "0011", "1101", "1110", "1110");

constant augend_array: bv_arr :=

("0010", "1110", "1101", "0010", "1101", "1100");

constant cin_array: bit_arr :=

('0' '0' '1' '0' '0' '1')('0', '0', '1', '0', '0', '1');

constant cout_array: bit_arr :=

('0', '1', '1', '0', '1', '1');(, , , , ,);

constant sum_array: bv_arr :=

("0101", "0001", "0001", "1111", "1011", "1011");

4-bit Adder Test Bench
begin

add1: Adder4 port map (addend, augend, cin,

sum, cout);

process

begin

for i in 1 to N loopfor i in 1 to N loop

addend <= addend_array(i);

augend <= augend_array(i);

cin <= cin_array(i);

wait for 10 ns;

4-bit Adder Test Bench
assert (sum = sum_array(i) and

cout = cout array(i))_ y())

report "Wrong Answer"

severity error;

end loop;

report "Test Finished";

end process;end process;

end Test;

ModelSim VHDL Simulation:
Based on Test Bench

VHDL Processes (Behavioral)()
D Flip-Flop with Asyncronous Clearp p y

Multiplexers: 2-to-1

entity MUX2to1 is

port(I1, I0, S: in bit;

bi)F: out bit);

end MUX2to1;

architecture Dataflow of MUX2to1 is

begin

S

F <= I0 when S = '0' else I1;

end Dataflow;

Multiplexer: 4-to-1
entity MUX4to1 is

port(I: in bit_vector(3 downto 0);

S: in bit_vector(1 downto 0);

F: out bit);

end MUX4to1;end MUX4to1;

architecture Dataflow of MUX4to1 is

begin

with S select

F <= I(0) when "00",

I(1) when "01",

I(2) when "10",

I(3) when "11";I(3) when 11 ;

end Dataflow;

Sequential Machine

Behavioral Model
entity Sequence_Detector is

port(X, CLK: in bit;

Z: out bit);

end Sequence_Detector;

architecture Behave of Sequence_Detector is

signal State: integer range 0 to 2 := 0;

begin

process(CLK)

begin

if CLK'event and CLK = '1' then

Behavioral Model
case State is

when 0 =>

if X = '0' then

State <= 0;

else

State <= 1;

end if;end if;

when 1 =>

if X = '0' then

State <= 2;

else

State <= 1;

end if;

Behavioral Model
when 2 =>

if X = '0' then

State <= 0;

else

1State <= 1;

end if;

end case;end case;

end if;

end process;

Z <= '1' when (State = 2 and X = '1')

else '0';

d B hend Behave;

ExerciseExercise
Exercise: Define the entity and architecture of a HALF

ADDER where the two input signals are A and B, and the two p g ,
outputs are SUM and CARRY.

ExerciseExercise ExerciseExercise

Processes
Used in behavioral modeling that allows you to use sequential
statements to describe the behavior of a system over time

[process_label:] process [(sensitivity_list)]
begin

list of sequential statements such as:
signal assignments

i bl i tvariable assignments
case statement
exit statement
if statementif statement
loop statement
next statement
null statementnull statement
procedure call
wait statement

end process [process label];end process [process_label];

Process
Statements within an architecture operate concurrently;
statements within a process execute sequentially
Processes themselves are concurrent statements

architecture Behav of FullAdder is
signal s1, s2, s3 : std_logic;
constant delay : time := 5 ns;

begin
HA1 : process (in1, in2)
begin
s1 <= (in1 xor in2) after delay;

concurrent
(parallel)

s3 <= (in1 and in2) after delay;
end process HA1;
HA2 : process (s1, c_in)
b i

sequential
begin

...

Process Statement
All statements in an architecture are concurrent
Process statements exist with an architecture
P t t t tProcess statements are concurrent
Sequential statements exist only within process
statementsstatements
All statements in the process are executed when the
process is invoked
A i t f iti it li t d l ti tA process consists of a sensitivity list, a declarative part
and a statement part:

name : process(sensitivity list)
declarations;

begin
statements;

end process name;end process name;

Process Execution
A real physical system the logic is “always active”
Processes behave similarly after executing last statementProcesses behave similarly, after executing last statement
they immediately go back to first statement
Process execution is suspended by wait statements -p y
Execution resumes when wait condition is met

Example: Examples of wait statements:Example:
process

begin
statements;

Examples of wait statements:

wait until EN=‘1’;
wait for 50ns;statements;

wait <condition>;
statements;

i di i

wait for 50ns;
wait on a,b;
- a and b are actually a

i i i liwait <condition>;
end process;

sensitivity list

Process Execution
All invoked processes are executed in parallel and the
order in which they appear in the code is unimportant
All i k d t th t t f i l tiAll processes are invoked at the start of a simulation
If wait condition is the first statement, execution is
immediately suspendedimmediately suspended
If wait condition is last statement, the process is
executed once then waits till condition is met
Sensitivity list that appear in process statement i.e.
process(a,b,c), are equivalent to “wait on” statement at

d fend of process
Process is invoked if a signal in the sensitivity list
changes its valuechanges its value
A process with no sensitivity list is re-invoked
immediately after last statement is executed

Signals in Processes
signals cannot be declared within a process
signals are declared within an architecture and are

i d b llrecognized by all processes
signal assignments within a process, only take
effect when process suspends till then all signalseffect when process suspends, till then all signals
retain their previous values
all signal assignments occur concurrentlyall signal assignments occur concurrently
only last assignment of a signal is effective

Full Adderu dde

HA1HA1
S_ha = (A xor B) = int1
C_ha = (A and B) = int2

HA2HA2
(A xor B) xor Cin = int1 xor Cin = Sum
(A xor B) and Cin = int 1 and Cin = int3
int2 or int3 Co tint2 or int3 = Cout

Full Adder – using ProcessesFull Adder using Processes
library ieee;

use ieee.std logic 1164.all;
-- Process P2 that defines the

second half adder and theuse ieee.std_logic_1164.all;
entity FULL_ADDER is

port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic);

second half adder and the
OR -- gate
P2: process (int1, int2, Cin)

end FULL_ADDER;

architecture BEHAV FA of

begin
Sum <= int1

xor Cin;architecture BEHAV_FA of
FULL_ADDER is
signal int1, int2, int3: std_logic;
begin

Process P1 that defines the first half

int3 <= int1
and Cin;

Cout <= int2 or-- Process P1 that defines the first half
adder
P1: process (A, B)

begin

Cout < int2 or
int3;

end process;
end BEHAV FAint1<= A xor B;

int2<= A and B;
end process;

end BEHAV_FA;

Concurrent vs. Sequential Execution

hit t CONCURRENT f MULTIPLE i

Following two VHDL codes lead to different results for
output Z

and

?

A

B
Z

architecture CONCURRENT of MULTIPLE is
signal Z, A, B, C, D: std_logic;

begin
Z <= A and B;
Z C d D

leads to
Z=unknown

and

?
C

D

ZZ <= C and D;
end CONCURENT;

architecture SEQUENTIAL of MULTIPLE is
i l Z A B C D td l isignal Z, A, B, C, D : std_logic;

begin
process (A, B, C, D)
begin
Z A d B

and
C

Z

leads to
Z=C*D

Z <= A and B;
Z <= C and D;

end process;
end SEQUENTIAL;

D

Concurrent Statements
Executed at the same time, independent of statement order
Signal assignment “<=“

Left side receives a new value whenever the right sideLeft side receives a new value whenever the right side
changes

Conditional signal assignment
TARGET <= VALUE;
TARGET <= VALUE_1 when CONDITION_1 else

VALUE_2 when CONDITION_2 else
...
VALUE_n;

Selected signal assignmentSelected signal assignment
with EXPRESSION select
TARGET <= VALUE_1 when CHOICE_1,

|VALUE_2 when CHOICE_2 | CHOICE_3,
VALUE_3 when CHOICE_4 to CHOICE_5,
...
VALUE h thVALUE_n when others;

Block Statements
A block statement provides a way to combine a group of
concurrent statements together
A f t t t b l d d dA group of statements can be placed under a guard
FORMAT
label: block (guard expression)label: block (guard expression)
-- declarative part
begin
-- statement part
end block label

A d i b l i th t l t t tA guard is a boolean expression that evaluates to true or
false.
Concurrent statements in block execute if guard is trueg

Sequential Statements
Sequential statements can only exist with a process
if , case , for loops are examples of sequential
statements
examples:
CASE sel IS
WHEN “10” =>

a := 1;

IF set = ‘1’ AND reset = ‘0’ THEN
q <= ‘0’ ;

< ‘1’
;

WHEN “01” =>
a := 2;

WHEN OTHERS =>

qn <= ‘1’ ;
ELSIF set = ‘0’ AND reset = ‘1’ THEN

q <= ‘1’ ;
qn <= ‘0’ ;a := 3;

END CASE;

qn <= 0 ;
ELSIF set = ‘0’ AND reset = ‘0’ THEN

q <= q ;
qn <= qn ;qn <= qn ;

ENDIF;FOR I IN 0 TO 3 LOOP
s(i) <= a(i) xor b(i);

END LOOPEND LOOP;

Sequential Statements
Executed according to the order in which they appear
Permitted only within processes, used to describe algorithms
IF statementIF statement
if CONDITION then

-- seq. statements
end if;

if CONDITION then
-- seq. statements

else
t t t

if CONDITION then
-- seq. statements

elsif CONDITION then
t t t-- seq. statements

end if;
-- seq. statements

...

else
-- seq. statements

end if;

CASE statement case EXPRESSION is
h VALUE 1when VALUE_1 =>
-- sequential statements

when VALUE_2 | VALUE_3 =>
sequential statements-- sequential statements

when VALUE_4 to VALUE_N =>
-- sequential statements

when others =>when others =>
-- sequential statements

end case;

Sequential Statements (contd.)()
FOR loop

Loop variable
Declared implicitly

process (A)
begin
Z <= "0000";Declared implicitly

Local
Read only
Must be locally static if the loop

Z <= "0000";
for I in 0 to 3 loop
if (A = I) then
Z(I) <= `1`;Must be locally static if the loop

is to be synthesized (must not
depend on signal or variable

l)

Z(I) <= 1 ;
end if;

end loop;
end process;values) end process;

WAIT statement
Stops process execution
Generally not synthesizable
An excellent tool in test bench and simulation

Wait for a specific time wait for specific time;Wait for a specific time p _ ;

Wait for a signal event wait on signal_list;

Wait for a true condition wait until condition;

Wait indefinitely wait;

Sequential Statements (contd.)
Variables are available within processes

Named within process declarations
Known only in this processKnown only in this process

Immediate assignment
Keep the last value
P ibl i tPossible assignments

Signal to variable
Variable to signal a ab e o s g a
Types have to match

Signals in VHDL
Signals carry information.
Allow analysis of timing relationships in a VHDL system.
Unlike variables in C signals contain information both onUnlike variables in C, signals contain information both on
current and previous values
Signals can have different types, e.g. bit, bit_vector(0 to 7)
E t l i l i l hi h t tit t t idExternal signals : signals which connect entity to outside
world (i.e. ports of the entity).

Have mode associated with them:a e ode assoc a ed e
IN mode : data can only be read from signal (port)
OUT mode : data can only be written to signal (port)
INOUT mode data can be read and ritten to signalINOUT mode : data can be read and written to signal
(port)

Internal signals : signals which are not visible outside the g g
architecture.

Declared in declarative part of architecture
Have no mode associated with themHave no mode associated with them

Signal Assignment

Y <= (A and B) or C -- simple assignment
Y < (A d B) C ft 10 d l d i tY <= (A and B) or C after 10ns -- delayed assignment
Y <= ‘0’ when a = b else ‘1’; -- conditional signal
assignment W it VHDL d f th h tiassignment

A
B Z

Write VHDL code for the schematic.
Write a statement for V,W,X and Z

VB

C
ZV

W

D
X

E

S

Variables
A method is needed for immediately storing temporary
data within a process
I di t t d ith th id f i blImmediate storage done with the aid of variables -
variable assignments take effect immediately as they
are sequential statementsare sequential statements
Variables can only be defined with a process and are
not recognized outside the processg p
Variable declaration very similar to signal declaration

e.g variable A : bit_vector(0 to 7);
V i bl i t d ith “ “ AVariable assignment done with “:=“ e.g. A :=
“00110011”
Signal has 3 properties : type value and time variableSignal has 3 properties : type, value and time, variable
only has 2: type and value
Signals and variables of same type can be assigned to
each other

Variable example
entity PARITY is

port (DATA: in bit vector (3 downto 0);p (_ ();
ODD : out bit);

end PARITY;

architecture RTL of PARITY is
begin

process (DATA)p ()
variable TMP : bit;

begin
TMP := `0`;

for I in DATA`low to DATA`high loop
TMP := TMP xor DATA(I);

end loop;p;

ODD <= TMP;
end process;

end RTL;end RTL;

Variables vs. Signalsg
Signals

In a process, only the last signal assignment is carried out
Assigned when the process execution is suspendedAssigned when the process execution is suspended
“<=“ to indicate signal assignment

Variables
Assigned immediately
The last value is kept
“:=“ to indicate variable assignment:= to indicate variable assignment

Variables vs. Signals

Signal values are assigned when the process
execution is suspendedexecution is suspended.
variable assignments take effect immediately.

Only the last signal assignment is carried out.
variable immediate assignmentvariable immediate assignment

Signals are know in the architectureSignals are know in the architecture.
Variables are known only in the process

Variables vs. Signals (contd.)
Depending on M and N are variables or signals, the following two
VHDL codes lead to different results for X.
Left code: A (B) is assigned to variables M (N) immediately → X=A+B.

signal A, B, C, X, Y : integer;
begin

signal A, B, C, Y, Z : integer;
signal M, N : integer;

() g () y
Right code: signal M takes the last assigned value of C → X=C+B.

g
process (A, B, C)
variable M, N : integer;

begin
M := A;

g , g ;
begin
process (A, B, C, M, N)
begin
M <= A;

N := B;
X <= M + N;
M := C;
Y <= M + N;

N <= B;
X <= M + N;
M <= C;
Y <= M + N;

end process; end process;

A C
+

B
X

+
C

Y

+
B

X

+
C

Y
B B

Asynchronous and Synchronous Processes
It is good practice to separate logic into
asynchronous logic and asynchronous logic

clk

if l k’ d l k ‘1’ hif clock’event and clock = ‘1’ then
means : if the clock rises from ‘0’ to ‘1’ then …

if clock’event and clock = ‘0’ then
means : if the clock falls from ‘1’ to ‘0’ then

• These statements cause the creation of edge triggered flipflops during the g gg p p g
synthesis process
• No need to add “else” statements to the above “if” statements
• Never add other conditions to above if statements. Instead of:Never add other conditions to above if statements. Instead of:

if clock’event and clock = ‘1’ and EN = ‘1’ then

do: if clock’event and clock = ‘1’ thendo: if clock event and clock = 1 then
if EN = ‘1’ then

Asynchronous and Synchronous Processesy y

ARCHITECTURE arc_shifter OF shifter
ISIS

SIGNAL shift_val :bit4;
BEGIN

nxt: PROCESS(load left right dinnxt: PROCESS(load, left_right, din,
dout)

BEGIN
IF (load = ’1’) THEN

current: PROCESS
BEGIN
WAIT UNTIL clock’EVENT and clock = ’1’;IF (load = 1) THEN

shift_val <= din;
ELSIF (left_right = ’0’) THEN
shift val(2 downto 0) <= dout(3

;
dout <= shift_val;

END PROCESS;
END arc_shifter;

shift_val(2 downto 0) dout(3
downto 1);
shift_val(3) <= ’0’;

ELSE
shift_val(3 downto 1) <= dout(2

downto 0);
shift_val(0) <= ’0’;()
END IF;

END PROCESS;

Predefined Signal Attributes
VHDL provides several predefined attributes which
provide information about the signalp g
signal_name’ACTIVE: indicates if a transaction has
occurred
signal_name’QUITE: indicates that transaction has not
occurred
signal name’EVENT : If an event has occurred onsignal_name EVENT : If an event has occurred on
signal_name
signal name’STABLE: If an event has not occurredg _
signal_name’LAST_EVENT: Time elapsed since last
event has occurred
i l DELAYED(T) A i l id ti l tsignal_name’DELAYED(T): A signal identical to

signal_name but delayed by T units of type TIME;

Configurations
Used by simulator to bind component instance to
entity-architecture pairentity architecture pair.
All designs simulated should have configurations.
If no instantiated components appear in architectureIf no instantiated components appear in architecture,
configuration is empty

Example 1: empty configuration

Example 2:
CONFIGURATION cfg2_rsff OF rsff is

FOR 2 ff

CONFIGURATION cfg1_rsff OF rsff is
FOR arc_rsff

FOR arc2_rsff
FOR U1,U2 : nand2 USE ENTITY

WORK.nand2(arc_nand2);
END FOR;END FOR;

END cfg1_rsff;

END FOR;
END cfg1_rsff;

Use of Packages in VHDLUse of Packages in VHDL
A VHDL package is simply a way ofA VHDL package is simply a way of
grouping a collection of related
declarations that serve a commondeclarations that serve a common
purpose
Can be reused by other designs
package identifier ispackage identifier is
{package declaration}

d k id tifiend package identifier;

Packages
Allow user to define elements that are not included in the
standard VHDL language.
A collection of commonly used data types and sub-
programs used in a design.
Packages are defined in two parts:Packages are defined in two parts:

package declaration : includes declaration of all
elements defined by the package.elements defined by the package.
package body : includes the implementation of all
elements declared in the package.

Not all packages have bodies, sometimes body not
required.

PACKAGE d k ISPACKAGE days_package IS
TYPE day_t IS (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday);
END days_package;

Predefined Packages
The most popular packages in VHDL are defined by
IEEE.
Standard : contains all basic declarations and definitions,
always included by default.
Std_logic_1164 : contains many useful language
extensions.
Textio : Contains definitions of all operations on textsTextio : Contains definitions of all operations on texts.
To use a the std_logic_1164 package in a design unit,
include the following statements: g

library IEEE;
use IEEE.std logic 1164.all;use IEEE.std_logic_1164.all;

For the previous user defined package example use :

use WORK.days_package.all;

Predefined Packages
The predefined types in VHDL are stored in a
library “std’
Each design unit is automatically preceded by
the following context clause
library std, work; use std.standard.all;

package standard is
type boolean is (false true); defined for operators = <=type boolean is (false, true); -- defined for operators =, <=,

>=, ..
type bit is (‘0’, ‘1’); -- defined for logic operations and, or,

notnot…
type character is (..);
type integer is range IMPLEMENTATION_DEFINED;
subtype natural is integer range 0 to integer’high;
type bit_vector is array(natural range <>) of bit;
…
end package standard;

VHDL Libraries
library IEEE;
use IEEE.numeric_bit.all;

Types signed and unsigned
Overloaded operators for signed and unsigned

library IEEE;y
use IEEE.std_logic_1164.all;
use IEEE numeric std all;use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;

T td l i d td l i tTypes std_logic and std_logic_vector
Overloaded operators for signed and unsigned

Use of VHDL in Synthesisy
Translates register-transfer-level (RTL) design into gate-
level netlist
VHDL was initially developed as a language forVHDL was initially developed as a language for
SIMULATION
Recently being used as a language for hardware synthesis y g g g y
from logic synthesis companies

Synopsys Design Compiler, Ambit BuildGates, Mentor
Graphics Autologic, ..

Synthesis tools take a VHDL design at behavioral or
structural level and generate a logic netliststructural level and generate a logic netlist

Minimize number of gates, delay, power, etc.
Area

delay

Basic Design Methodologyg gy

Requirements

SimulateRTL Model

Synthesize

Gate-level

y

Simulate Test BenchModel Simulate Test Bench

ASIC FPGAASIC or FPGA Place & Route

Ti iTiming
Model Simulate

