What does HDL stand for?

Chapter 6.5. VHDL Design

HDL is short for Hardware Description Language

(VHDL - VHSIC Hardware Description Language)
(Very High Speed Integrated Circuit)

What's VHDL? The World Before VHDL

VHDL is a programming language for describing digital
system behavior and structure. It can be used to
describe, model and design digital systems.

VHDL is a industry standard language used to describe
hardware from the abstract to the concrete level.

Polygon pushing
Transistor level design
Boolean design
o One equation for each FF data input
Schematic Design

Originally intended for simulation, modeling and o Allow use of blocks in addition to FFs and gates.
documentation Impractical for large designs

Later also used for synthesis HDL Design, used for

Originally tightly connected with US DoD, but soon © Requiremen't specification

found its way to non-military applications o Documentation

o Testing using simulation

o Verification of correctness before manufacturing

o Synthesizing digital circuits: implementation at
Register Transfer Level — Netlist of elements

First standard in 1987, revised in 1993.

Why VHDL?
“Universal” Language proposed by USA DoD
IEEE standard
Wide industry acceptance
Supports different methodologies
Supports different technologies
Supports technology-independent abstract models
Helps component re-use Advantages
Self-documenting
Many tools available

[Behavioral descriplions|

Top-down design | | Synthesis tools

-

* simulate sooner
« partition the design
« higher readability |

» less bugs
« faster design

+ larger designs |

‘ Requirements ‘

D eS i g n F I OW ‘ Design specifications ‘

‘ Design formulation

v

‘ Logic synthesis

v

‘ Post synthesis simulation

v

‘ Mapping, placement, routing ‘

v

|
|
|

v

FPGA programming unit

v v

[ASIC masks ‘ ‘ Configured FPGAS ‘

VHDL Design: Entity + Architecture

Simple Example:
a Comparator

Entity Compare is

A[8]—> port(A, B: in std_logic_vector(0 to 7);
™ EQ EQ: out std_logic);
B8] end Compare;
architecture comp_1 of Compare is
begin
process (A, B)
begin
if (A=B)
then EQ<="1"
else EQ<='0"
end if;

end process;

end comp_T1;

Entities and Architectures

L The minimum VHDL design description must include at

least one entity and its bounded architecture.
« Each VHDL design description consists of at
least one entity / architecture pair.

defines the external defines the underlying
interface of the circuit structure and/or
behavior of the circuit

But VHDL allows the designer to create different alternate
architectures for each entity

Entity

A8 e

Entity declaration

Entity name —™———__

_‘—-__-—_-—"_‘-D-
Entity Compare is

10 definit —.f___,__;p_gn.ﬁ.&, B: im std_logic_vectoy0 to 7);
efinition EQ: out std_logic);

—

Q
B8 — Signal direction Signal type

It provides the interface for the circuit

It does not include the actual circuit behavior

It allows to connect the circuit into higher level circuits
VHDL is case-insensitive.

Architecture _ ,
architecture comp_2 of Compare is

definition begin
process (A, B)

Architecture name

/ end

Functional description
(delimited by a begin/end
construct) Al8]—*

T EQ

Bounded entity

m |t is always related to one entity;
m |t describes the behavior or the structure of the circuit

m For each entity, it is possible to have more than one
architecture.

VHDL Design Units

Entity: specifies the interface of the system with the
environment.
Architecture: description of the internal part of the
system, specifies how the inputs are transformed into
outputs.
Process: Concurrency, event controlled
Configuration
o used to combine a component instance to an entity-
architecture pair.
Package
o Encapsulate elements that can be shared globally
among design units.
Library: Compilation, object code

Entity

Interface description :

Defines connections (ports) that transfer information
to and from the system.

Defines port types : IN, OUT, INOUT

Architecture only allowed to read IN ports, or write to

OUT ports. INOUT ports can be read or written to.
eg.

S g —
ENTITY rsff IS
PORT (set, reset : IN BIT; — Rest db|—
g,gb : INOUT BIT);
END rsff;
RSFF

Entity Declaration

entity NAME_OF_ENTITY is

Architecture

Implementation of the design :

port (signal_names: mode type;

MVL-9
signal_names: mode type; Uninitialized U | Weak 1 'y’
: Don't Care -" | Weak 0 '
signal_names: mode type); [rorcing 1 "1’ | Weak Unknown | W’
end [NAME_OF_ENTITY] ; Forcing 0 0" |High Impedance | 'z’
Forcing Unknown | X'

= NAME_OF_ENTITY: user defined

= signal_names: list of signals (both input
and output)

= mode: in, out, buffer, inout

= type: boolean, integer, character,
std_logic

All entities have one or more architecture

Describes the functionality of the system.

Always connected with a specific entity

entity ports are available as signals within the architecture
The description can be structural or behavioral.

Structural : Specifies which sub-components are used
and how they are connected.

» Behavioral : Specifies what the system does, describes
the outputs’ responses to the inputs’ changes.

Architecture for Entity

m Describes an implementation of an entity
= May be several per entity
m Contains concurrent statements

architecture Behav of Reg4 is
component Regl

_ port (...); additional
declarative part end component ;

b--7 8ign
signal s1,s2 : std logic; <~ S9 as
begin
. sl <= 82;
definition part 1 o D e TN _.__ concurrent
end Behav; statements

Structural: describe the design as combination of building blocks
Behavioral: describe algorithm/function of the design/module
Mixed structural and behavioral
o Example: Register Transfer Level (RTL) modeling

= Data path described structurally

= Control section described behaviorally

Architecture: Behavioral

Declarative part:

= data types

architecture EXAMPLE of STRUCTURE is
. cong,’Fants _ subtype DIGIT isinteger range 0 to 9;
= additional signals constant BASE: integer := 10;
("actual" signals) signa DIGIT_A, DIGIT_B: DIGIT;
. components sgnal CARRY: DIGIT;
begin
e DIGIT A<=3;
Definition part (after SUM <=DIGIT_A + DIGIT_B;
'begin’): DIGIT B<=7,
u Skgnalassk;nnqents CARRY <= 0when SUM <BASE else 1,
end EXAMPLE ;
processes
component
instantiations
= concurrent
statements:

order not important

Behavioral Architecture Examples

entity compareis entity rotateis
port(A,B: in std_logic_vector (7 downto 0); port(Clk, Rst, Load: in std_logic;
EQ: out std_logic); Data: in std_logic_vector (7 downto 0);
end compare; Q: out std_logic_vector (7 downto 0));
end rotate;
architecture comparel of compareis
begin architecturerotatel of rotateis
EQ<="1 when (A=B)else'0’; begin
end comparel; reg: process(Rst,Clk)
variable Qreg:std_logic_vector (7 downto 0);
begin
if Rst ="1" then
--Async reset

Qreg :="00000000" ;
elsif (Clk ='1' and Clk'event) then
if (Load ='1') then Qreg := Data;
else Qreg:=Qreg(0) & Qreg(7 downto 1);
end if;
end if;
Q <=Qreg;
end process;
end rotatel;

Architecture: Structural

U A purely structural architecture does not describe any functionality

and contains just alist of components, their instantiation and the
definition of their interconnections.

Structural Architecture: Example
= In declarative part of architecture.

entity FULLADDER is
port (A,B, CARRY_IN:in bit;
SUM, CARRY: out bit);

end FULLADDER,;

architecture STRUCT of FULLADDER is
signal W_SUM, W_CARRY1, W_CARRY?2 : bit;

component HALFADDER
port (A, B : in bit;
SUM, CARRY : out bit);
end component;

component ORGATE
port (A, B :in bit;
RES : out bit);
end component;

begin

Structural Architectures- Instantiation

= Instantiation in definition part of architecture
(after 'begin’)

= begin
MODULE1: HALFADDER
port map(A, B, W_SUM, W_CARRY1);

Port Association Mixed Behavior and Structure
.. An architecture can contain both multiofier multiolicand
Two methods of port association are behavioral and structural parts P P

available: o process statements and y |
component instances shift_reg
collectively called concurrent

o e.g. port map(A,B,C,open,E); statements Mcomml
v adder

Positional port association

o processes can read and assign

i 1t section
order is critical o to signals L)
o Named port association Example: register-transfer-level
. model reg
e.g port map: o data path described structurally
(Sum=>S, Carry=>open, IN1=>X, IN2=>Y); o control section described
left side: "formals" behaviorally product
(port names from component declaration)
right side: "actual” (architecture signals)
o Independent of order in component declaration
Mixed Example Mixed Example
entity multiplier is
port (clk, reset:inbit; multiplier_sr : entity work.shift_reg(behavior)
multiplicand, multiplier : in integer; port map (d => multiplier, q => mult_bit,
product : out integer); load => mult_load, clk =>clk);

end entity multiplier; product <= full_product;

architecture mixed of mulitplier is control_section : process is
signal partial_product, full_product : integer; -- variable declarations for control_section
signal arith_control, result_en, mult_bit, mult_load : bit; T

begin begin

-- sequential statements to assign values to control signals

wait on clk, reset;
end process control_section;
end architecture mixed;

arith_unit : entity work.shift_adder(behavior)
port map (addend => multiplicand, augend => full_product,
sum => partial_product,
add_control => arith_control);
result : entity work.reg(behavior)
port map (d => partial_product, q => full_product,
en =>result_en, reset => reset);

Data Types

U Like a high-level software programming language, VHDL
supports different data types.

VHDL Data Types

U Data types allow the user to represent Bit Integer
- high-level data (real, integer, string, ...) i~
- values got by individual wires in a circuit o '0'or™ Real
Q Every data type can get a defined set of values. Bit_Vector Character
O VHDL is strongly-typed: strong restrictions on how operations "00" "01" "0" ey var e
involving different data-types can be intermixed. © ’ ’ T o 'a,'p, ", 2, ...
| Data Type Values Example Boolean Enumeration Type
std_logic 0,17, X, U2 L H W | SUM <= 17 o FALSE or TRUE o User defined
std_logic_vector | (array of std_logic) Data_out <= “0010"; .
boolean True, False EQ <= True Tlme
Integer 2,-1,0,1,2.. Count <= Count+2; e integer with units
Real 1.0, -1.0E5 V=W/53;
Time 7 ns, 100ps Q <= ‘1" after 6 ns; © fS’ ps, ns, us, ms,
Character a’, ‘2, '$’ CharData <= ‘x’;
String (array of characters) Msg <= “Error”;
Data Types Definition of Arrays
Two main data types are: , ,
Scalar Types Collection of signals of the same type

o integer, real, enumerated
e.g. type byte is range 255 downto 0;
type colors is (red, green, yellow); -
(enumerated data type)

Composite Types

o arrays and records
arrays : regular structures consisting of
elements of same type
user may define his own arrays or
use some predefined arrays e.g. bit_vector,
string
Records: values of different types

Predefined arrays :
bit_vector (array of bit)
string (array of character)
Example:
signal bus_A : bit_vector(3 downto 0);
Signal bus_B: bit_vector(0 to 3);
bus A <=bus B

bus A(3) <¢===bus B(0)
bus A(2) ¢===bus B(1)
bus A(1) <===hus B(2)
bus A(0) ¢===bus B(3)

Types of Assignment for 'bit' Data Types

Single bit values are enclosed in "'
Vector values are enclosed in "..."
optional base specification (default: binary)
values may be separated by underscores to

improve readability

signal BUS A: bit_vector (3 downto 0);

Data Type

Type checking is strict!

architecture xyz of My_Entity is

signal Count : integer;
signal Data_bus : std_logic_vector(7 downto 0);

begin

WRONG!

BUS A(3) <="1";
BUS A <=*0011";
BUS A<=x"C” Solution: type conversion functions (later...)
VHDL Operators VHDL Operators
o “A+B” means “A add B” (A, B: integers, bits or bit-vectors, etc.).
Logical Unary Sign If you want logical “OR” operation, you should use “A or B”.
o and. or. nand. nor o+, - o “A*B” means “A multiply B” (A, B: integers, bits or bit-vectors,
T Y T etc.). If you want logical “AND” operation, use “A and B”.
xor Multiplication . : o
] o Expression consist of operands and operators. Following is a list
Relational o ¥/, mod, rem of VHDL operators: priority
0 = /5<,<5,>,>= Miscellaneous logical | ot
Shift not, abs, **
? And |or Nand |nor xor | Xnor

o sll, srl, sla, sra, rol, ...and other more complex :

ror functions included in relational | = /= < <= > >=
Addition libraries IEEE standard Shift

. logic 1164 and IEEE o SIl - |srl Sla |sra rol |ror
° T standard logic arithmetic. arithmetic | 4 -
Concatenation

8 * / mod |rem * abs
O

Concatenation operator: &

The concatenation operator '&' is allowed on the right
side of the signal assignment operator '<=', only.

architecture CLASS1 of CONCAT is
signal BYTE : bit_vector (7 downto 0);
signal A_BUS, B_BUS : bit_vector (3 downto 0);
begin

BYTE <=A_BUS & B_BUS;
end CLASSI;

Combinational Logic

entity ADD is
port (A, B : in std logic _vector(7 downto 0) ;
Z : out std logic_vector (15 downto 0));
end ADD;

architecture ARITHMETIC of ADD is

begin
A:
Z
B

7 <= A + B;
end ARITHMETIC;

VHDL Modules

signal C: bit;

begin
C <= A and B; -- concurrent
E <= C or D; -- statements

end gates;

Sequential Logic

A general term regarding design containing flip-flops, i.e.
clocked

Explicit reset is necessary to guarantee the design during
power-up

4] L) entity two_gates is
&= [— % port(A, B, D: in bit; E: out bit);
D — end two_gates;

architecture gates of two_gates is

process (CLK,RESET)

begin
if (RESET = “17) then INPUT DATA
DATA <= "0~ ;
elsif (CLK event and CLK="1") then
DATA <= INPUT ; CLK —]
end if ;
end process ; RESET ———

RTL: Combinational Logic and Registers
Signal assignments in clocked processes infer flip-flops

LOGIC_A: process
begin

wait until CLK event and CLK="1";

-- Logic A
end process LOGIC_A; L
LOGIC_B: process (ST) — ST
begin K v

-- Logic B /! |
end process LOGIC_B; /,’/ CLK — :

logic + flip-flops purely combinational logic

Half Adder

library ieee;
use ieee.std_logic_1164.all;
r———""—""="~>"77=- 'i entity half_adder is
X — | sum port(
X,y: in std_logic;

sum, carry: out std_logic);
end half_adder;

carry architecture myadd of half_adder is

""'%' begin

| sum <= X XOr y;
carry <= x and y

end myadd;

Full Adder (Dataflow)

X— : :
Full " Cou entity FullAdder is
¥Y—=1 dder ’ port(X, Y, Cin: 1in bit; --Inputs
C, > Sum Cout, Sum: out bit); --Outputs
end FullAdder;
architecture Dataflow of FullAdder is
begin -- concurrent assignment statements
Sum <= X xor Y xor Cin after 2 ns;
Cout <= (X and Y) or (X and Cin) or (Y and Cin)

after 2 ns;

end Dataflow;

4-bit Ripple-Carry Adder

Sﬁ SI SI S{]
I S A N
c Full G | Fan [G | Fan || G | Ful
¢ adder adder adder adder

entity Adder4 is
port(A, B: in bit vector (3 downto 0);

Ci: in bit;
S: out bit vector (3 downto 0);

Co: out bit);
end Adder4;

: ModelSim VHDL Simulation #1:
4-bit Adder (Structural) Based on Commands (*.do file)

architecture Structure of Adder4 is Simulator Commands

component FullAdder
add list A B Ci S Co C

force A 0011
force B 0010
force Ci 0

port(X, Y, Cin: in bit; -- Inputs
Cout, Sum: out bit); -- Outputs
end component;
signal C: bit vector (3 downto 1); -- intermnal signal
begin --instantiate four copies of the FullAdder run 10 ns
FAO: FullAdder port map(A(0),B(0),Ci,C(1),S(0));
FAl: FullAdder port map(A(1l),B(1),C(1),C(2),8(1));
FA2: FullAdder port map(A(2),B(2),C(2),C(3),8(2));
FA3: FullAdder port map(A(3),B(3),C(3),Co,S(3));

end Structure;

force B 1110

run 10 ns

ModelSim VHDL Simulation ModelSim VHDL Simulation #2: Based
(Waveforms) on Test Benches
Testing a design by simulation
|cE8||sBBM| R X[\ B QQam & Use a test bench model

o an architecture body that includes an
instance of the design under test

0] i (T — o applies sequences of test values to inputs

o monitors values on output signals
either using simulator

Cursor T - or with a process that verifies correct operation

[| AR il
| Onsto21ns Mow: 20 ns Delta: 0 v

Test Benches

VHDL can capture
performance specification for

Test Bench Example

entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is

a circuit, in the form of a test [M signal d0, d1, d2, d3, en, clk, q0, q1, g2, g3 : bit;
bench. begin
Test benches are VHDL dut : entity work.reg4(behav)
descriptions of circuit stimuli DUT ~ portmap (d0, d1,d2, d3, en, clk, q0, 41, 42, 43);
and corresponding expected Stlm}”US - processis
outputs that verify the begin _
behavior of a circuit over /‘ -EI;eSt h d0 <="1"; d1 <="1"; d2 <="1"; d3 <="1’; wait for 20 ns;
encl —0- =0 : .
time. Test benches should en :: ? CIK.?; OéowalF for 20 ns;
be an integral part of any eIT(<__ 1 wa|_t fOI’ 20 ns,
VHDL project and should be ors= o watior sons, e .
ted in tand ith oth d0<="0"; d1<="0"; d2<="0"; d3 <="0"; wait for 20 ns;
creac-? .m andem W.I c.) er en <='0’; wait for 20 ns;
descriptions of the circuit.
wait;
end process stimulus;
end architecture test_reg4;
4-bit Adder Test Bench
entity TestAdder4 is
end TestAdder4;
Addend A architecture Test of TestAdder4 is
Augend
B component Adder4
Test Carry n C 4-Bit port (A, B: in bit vector(3 downto 0); Ci: in
bench S I adder bit;
= S S: out bit vector (3 downto 0); Co: out
Carry out C bit);
0 end component;

418_02 47

signal addend, augend, sum: bit vector (3 downto
0);

signal cin, cout: bit;

4-bit Adder Test Bench

constant N: integer := 6;
type bv_arr is array(l to N) of
bit vector (3 downto 0);

type bit arr is array(l to N) of bit;
constant addend array: bv_arr :=

(woo011", "00O11v, "o0O11", "1l101v, "1110",
constant augend array: bv_arr :=

(woo10™, ®"1110", "1101", "O0O1lO", ™1101",

constant cin array: bit arr :=

(IOII IOII lll’ IOII l0l’
constant cout_array: bit arr :=
(IOI’ I1I’ I1I’ IOI’ I1I’

constant sSum_ array: bv_arr =
(»0101", "0001", "00O01™, "1111", »1011",

n1110") ;

n1100") ;

lll);

'1');

n1011");

4-bit Adder Test Bench

begin
addl: Adder4 port map (addend, augend, cin,

sum, cout);

process
begin
for i in 1 to N loop
addend <= addend array (i) ;
augend <= augend array(i);
cin <= cin_array(i);

wait for 10 ns;

4-bit Adder Test Bench

assert (sum = sum array(i) and
cout = cout_array(i))

report "Wrong Answer"
severity error;

end loop;

report "Test Finished";

end process;
end Test;

ModelSim VHDL Simulation:
Based on Test Bench

File Edit WView Insert Format Tools Window

ﬁﬂ%“éﬁE.MH%%EﬂHKE;@;QQEH}‘ o
I =F | L B 24 =4

0011
OWoolo T]

B

| Onsto22ns | Mow: 60 ns Delta: 2 y

VHDL Processes (Behavioral)

D Flip-Flop with Asyncronous Clear

| process (CLK, CIrN)
begin

if CLRn = '0' then Q <= '0';

else if CLK'event and CLK =
then Q <= D;

end if;

VAN end if;

DFF O— CIrN

\ (end process;

"

Multiplexers: 2-to-1

entity MUX2tol is Iy 0
port (I1l, IO, S: in bit;
F: out bit); I]

end MUX2tol;

architecture Dataflow of MUX2tol is
begin
F <= I0 when S = '0' else Il;

end Dataflow;

Multiplexer: 4-to-1

entity MUX4tol is
port(I: in bit vector (3 downto 0);
S: in bit vector (1l downto 0);
F: out bit);
end MUX4tol;
architecture Dataflow of MUX4tol is
begin
with S select
F <= I(0) when "OO",
I(1) when "O1",
I(2) when "10",
I(3) when "11";

end Dataflow;

Sequential Machine

Present Next State Present Output
State X=0 X=1 X=0 X=1
So Si S; 0 0
S 5, S 0 0
s, S, S, 0 1

Behavioral Model

entity Sequence Detector is
port (X, CLK: in bit;
Z: out bit);
end Sequence Detector;

architecture Behave of Sequence Detector is
signal State: integer range 0 to 2 := 0;
begin
process (CLK)
begin
if CLK'event and CLK = 'l' then

Behavioral Model

case State is
when 0 =>
if X = '0' then
State <= 0;
else
State <= 1;
end if;
when 1 =>
if X = '0' then
State <= 2;
else
State <= 1;

end if;

Behavioral Model

when 2 =>

if X = '0' then
State <= 0;
else

State <= 1;
end if;
end case;
end if;
end process;
Z <= 'l' when (State = 2 and X = '1"')
else '0';

end Behave;

Exercise

U Exercise: Define the entity and architecture of a HALF
ADDER where the two input signals are A and B, and the two
outputs are SUM and CARRY.

Solution Another possible architecture

Entity Half_Adder is

port(A, B: in std_logic;
SUM, CARRY: out std_logic);
end Half_Adder;
architecture Add of Half_Adder is

Concurrent statements begin SUM <=1’ when (A /= B) else '0’;
—* SUM <= A xor B; CARRY <="1"when (A=B and A='1") else '0;

[~ CARRY <= A and B; end Add2;

architecture Add2 of Half_Adder is

begin

-- another solution (this is a comment!)

end Add;

Exercise Exercise

Define a circuit with two integer inputs A and B. Locate the errors present in this VHDL code:
The output EQ is equal to ‘1’ iff A=B+1.

Entity Add_1 is o
Entity Compare_int is port(A: in integer: I/O |definition
port(A, B: in integer; RE logic_vector(0 to 7));
EQ: out std_logic); end Add_1;
end Compare_int; . .
- architecture Add of Add_1 is ; ;
architecture comp of Compare_int is bedi B valid assignment
. egin
begln RE .1 M SSing i;!
EQ<='1"when (A=B+1) else ‘0’;
) end Add;
end comp;
Processes PrOCGSS
Used in behavioral modeling that allows you to use sequential ithi i .
statements to describe the gehavior of a};ystem over t?me Statements W.Ith.m an architecture operate cor)currently,
[process_label:] process [(sensitivity list)] statements within a process execute sequentially

begin

Processes themselves are concurrent statements
list of sequential statements such as:

signal assignments architecture Behav of FullAdder is
variable assignments signal sl1, s2, s3 : std logic;
case statement constant delay : time := 5 ns;
exit statement begin
if statement concurrent ______.__- ->HAl : process (inl, in2)
loop statement (parallel) begin
next statement _#8l <= (inl xor in2) after delay;
null statement . ..»83 <= (inl and in2) after delay;
pI’O_CGdure call .~ end process HAL;
wait statement sequential =~ “HA2 : process (sl, c_in)

end process [process_label]; begin

Process Statement

All statements in an architecture are concurrent

Process statements exist with an architecture

Process statements are concurrent

Sequential statements exist only within process

statements

= All statements in the process are executed when the
process is invoked

» A process consists of a sensitivity list, a declarative part

and a statement part:

name : process(sensitivity list)
declarations;
begin
statements,
end process name;

Process Execution

A real physical system the logic is “always active”

Processes behave similarly, after executing last statement
they immediately go back to first statement

Process execution is suspended by wait statements -
Execution resumes when wait condition is met

Example: Examples of wait statements:
process
begin wait until EN="1";

statements; wait for 50ns;
wait <condition>; wait on a,b;
statements; -aand b areactually a
wait <condition>; sensitivity list

end process;

Process Execution

All invoked processes are executed in parallel and the
order in which they appear in the code is unimportant

= All processes are invoked at the start of a simulation
= If wait condition is the first statement, execution is

immediately suspended

If wait condition is last statement, the process is
executed once then waits till condition is met
Sensitivity list that appear in process statement i.e.
process(a,b,c), are equivalent to “wait on” statement at
end of process

Process is invoked if a signal in the sensitivity list
changes its value

A process with no sensitivity list is re-invoked
immediately after last statement is executed

Signals in Processes
signals cannot be declared within a process

signals are declared within an architecture and are
recognized by all processes

signal assignments within a process, only take
effect when process suspends, till then all signals
retain their previous values

all signal assignments occur concurrently
only last assignment of a signal is effective

Full Adder

1P : P2 :
A Inft : iSum
: 8_ha|—— ; ;
' HA1 ' ' HA2 :
B | T - "|iz>_:‘=_"'lt
' "t 1R O : n
CR---- - meooeed T !

= HA1
S_ha = (A xor B) = int1
o C_ha=(AandB)=int2
= HA2
o (A xor B) xor Cin = int1 xor Cin = Sum
(A xor B)and Cin =int 1 and Cin = int3
int2 or int3 = Cout

Full Adder — using Processes

library ieee; -- Process P2 that defines the

use ieee.std_logic_1164.all;
i — oot ’ second half adder and the
entity FULL_ADDER is OR -- gate

port (A, B, Cin : in std_logic;
Sum, Cout : out std_logic);

P2: process (int1, int2, Cin)

begin
end FULL_ADDER; .
Sum <=int1
architecture BEHAV_FA of xor Cin;
FULLADDERs @ int3 <= int1
Zleggr}? int1, int2, int3: std_logic; and Cin:
- Process P1 that defines the first half Cout <=int2 or
adder int3;
P prg(;(;isns A.B) end process;
int1<= A xor B; end BEHAV_FA;
int2<= A and B;

end process;

Concurrent vs. Sequential Execution
U Following two VHDL codes lead to different results for

output Z

architecture CONCURRENT of MULTIPLE is A
signal 7z, A, B, C, D: std logic;

begin leads to
Z <= A and B; Z=unknown

Z <= C and D;
end CONCURENT;

lllll.bz ‘a’
(o9

Z <= A and B;

D
architecture SEQUENTIAL of MULTIPLE is
signal 7z, A, B, C, D : std_logic;
begin leads to
process (A, B, C, D) Z=C*D Cc
begin @ Z
D

7 <= C and D;
end process;
end SEQUENTIAL;

Concurrent Statements

Executed at the same time, independent of statement order

= Signal assignment “<="*

o Left side receives a new value whenever the right side
changes

= Conditional signal assignment

TARGET <= VALUE;
TARGET <= VALUE_ 1 when CONDITION 1 else
VALUE 2 when CONDITION 2 else

VALUE n;

m Selected signal assignment

with EXPRESSION select

TARGET <= VALUE 1 when CHOICE 1,
VALUE 2 when CHOICE 2 | CHOICE 3,
VALUE 3 when CHOICE 4 to CHOICE 5,

VALUE n when others;

Block Statements Sequential Statements

A block statement provides a way to combine a group of = Sequential statements can only exist with a process
concurrent statements together if, case , for loops are examples of sequential
A group of statements can be placed under a guard statements
FORMAT . = examples:
label: block (guard expression)
-- declarative part CVA\\,aEE;e' '1% — IF set =1 AND reset =0’ THEN
begin a= 1 q<=‘0;
« O = gn<=‘1;
- statement part W';EE 2(.)1 g ELSIF set =0’ AND reset =1’ THEN
end blgck label | WHEN OTHERS => q<='1;
A guard is a boolean expression that evaluates to true or a:=3: gn<=‘0;
false. END CASE: ELSIFset='0" AND reset =0’ THEN
; —q:
Concurrent statements in block execute if guard is true gn <:q an;
FORIINO TO3LOOP ENDIF;
s(i) <= &(i) xor byi);
END L OOP;
Sequential Statements Sequential Statements (contd.)
Executed according to the order in which they appear = FOR loop rocess (A)
Permitted only within processes, used to describe algorithms o Loop variable I;egin
IF Statement u Declared |mp||C|t|y Z <= "0000";
if CONDITION then if CONDITION then if CONDITION then = Local for I in 0 to 3 loop
e e, TS e e e e = Read only - it (A - 1) then
- seqg. statements -- seq. statements = Mustbe |Oca”y static if the |OOp 4 (I) <= 17;
end if; is to be synthesized (must not end if;
else ceq. statements depend on signal or variable end loop; .
end if; values) end process;
= WAIT statement
CASE statement case EXPRESSION is o Stops process execution

when VALUE 1 => o Generally not synthesizable
-- sequential statements

o An excellent tool in test bench and simulation
when VALUE 2 | VALUE 3 => - — - — 5
-~ sequential statements Wait for a specific time wait for specific_time;
when VALUE 4 to VALUE N => Wait forasigna| event wait on signal list;
-- sequential statements
when others =>
-- sequential statements Wait indefinitely wait;
end case;

Wait for a true condition wait until condition;

Sequential Statements (contd.)

= Variables are available within processes
o Named within process declarations
o Known only in this process
Immediate assignment
Keep the last value

m Possible assignments
o Signal to variable
o Variable to signal
o Types have to match

Signals in VHDL

= Signals carry information.
= Allow analysis of timing relationships in a VHDL system.
= Unlike variables in C, signals contain information both on

current and previous values

= Signals can have different types, e.qg. bit, bit_vector(0 to 7)
» External signals : signals which connect entity to outside

world (i.e. ports of the entity).
o Have mode associated with them:
= IN mode : data can only be read from signal (port)
» OUT mode : data can only be written to signal (port)
= INOUT mode : data can be read and written to signal
(port)
Internal signals : signals which are not visible outside the
architecture.
o Declared in declarative part of architecture
o Have no mode associated with them

Signal Assignment

m Y<=(AandB)orC -- simple assignment

» Y <= (A and B) or C after 10ns -- delayed assignment

m Y<=‘0whena=belse ‘1’; --conditional signal

assignment Write VHDL code for the schematic.
A Write a statement for V,W,X and Z
B
Z
c W
X

D —_—
E —
S

Variables

A method is needed for immediately storing temporary
data within a process

Immediate storage done with the aid of variables -
variable assignments take effect immediately as they
are sequential statements
Variables can only be defined with a process and are
not recognized outside the process
Variable declaration very similar to signal declaration

o e.g variable A : bit_vector(0 to 7);
Variable assignment done with “:=" e.g. A :=
‘00110011~
Signal has 3 properties : type, value and time, variable
only has 2: type and value
Signals and variables of same type can be assigned to
each other

Variable example

= entity PARITY is
port (DATA: in bit_vector (3 downto 0);
ODD : out bit);
end PARITY;

architecture RTL of PARITY is
begin
process (DATA)
variable TMP : bit;
begin
TMP :="07;

forlin DATA low to DATA high loop
TMP := TMP xor DATA(l);
end loop;

ODD <= TMP;
end process;
end RTL;

Variables vs. Signals
Signals
o Ina process, only the last signal assignment is carried out
o Assigned when the process execution is suspended
o “<=“toindicate signal assignment
Variables
o Assigned immediately
o The last value is kept
o “:="toindicate variable assignment

Variables vs. Signals

Signal values are assigned when the process
execution is suspended.

variable assignments take effect immediately.

variable immediate assignment

Signals are know in the architecture.
Variables are known only in the process

Variables vs. Signals (contd.)
Depending on M and N are variables or signals, the following two
VHDL codes lead to different results for X.
Left code: A (B) is assigned to variables M (N) immediately — X=A+B.
Right code: signal M takes the last assigned value of C — X=C+B.

Only the last signal assignment is carried out.

signal A, B, C, X, Y : integer; signal A, B, C, Y, Z : integer;
begin signal M, N : integer;
process (A, B, C) begin
variable M, N : integer; process (A, B, C, M, N)
begin begin
M := A; M <= A;
N := B; N <= B;
X <= M + N; X <= M + N;
M := C; M <= C;
Y <=M + N Y <= M + N;
end process; end process;

a oY
- -
o o

Asynchronous and Synchronous Processes

0 ltis good practice to separate logic into
asynchronous logic and asynchronous logic

cdk ————

if clock’event and clock = ‘1’ then

means : if the clock risesfrom ‘0’ to ‘1" then ...
if clock’event and clock =0’ then

means : if the clock fallsfrom ‘1’ to ‘0’ then

Asynchronous and Synchronous Processes

ARCHITECTURE arc_shifter OF shifter
IS
SIGNAL shift_val :bit4;
BEGIN
nxt: PROCESS(load, left_right, din,
dout)
BEGIN
IF (load =’1") THEN
shift_val <= din;

current: PROCESS
BEGIN
WAIT UNTIL clock’ EVENT and clock ='1’;
dout <= shift_val;

, , , . ELSIF (left_right = '0') THEN I ROCESS,
* These statements cause the creation of edge triggered flipflops during the shift_val(2 downto 0) <= dout(3 = '
synthesis process downfo 1),
* No need to add “else” statements to the above “if” statements shift_val(3) <="0’;
 Never add other conditionsto aboveif statements. Instead of: ELSE
if clock’ event and clock = ‘1" and EN = ‘1’ then shift_val(3 downto 1) <= dout(2
downto 0);

do: if clock’ event and clock = ‘1’ then shift_val(0) <="0%

if EN="1"then END IF;

: END PROCESS;

Predefined Signal Attributes Configurations

= VHDL provides several predefined attributes which
provide information about the signal

v signal_name’ACTIVE: indicates if a transaction has
occurred

v signal_name’ QUITE: indicates that transaction has not
occurred

v signal_name’EVENT : If an event has occurred on
signal_name

v signal_name’ STABLE: If an event has not occurred

v signal_name’LAST_EVENT: Time elapsed since last
event has occurred

v signal_name’DELAYED(T): A signal identical to
signal_name but delayed by T units of type TIME;

= Used by simulator to bind component instance to

entity-architecture pair.

= All designs simulated should have configurations.
= If no instantiated components appear in architecture,

configuration is empty

Example 1: empty configuration

CONFIGURATION cfgl rsff OF rsff is
FOR arc_rsff
END FOR;

END cfgl rsff;

Example 2:
CONFIGURATION cfg2_rsff OF rsff is
FOR arc2_rsff
FOR UL1,U2: nand2 USE ENTITY
WORK.nand2(arc_nand2);
END FOR;
END cfgl rsff;

Packages

= Allow user to define elements that are not included in the
standard VHDL language.

= A collection of commonly used data types and sub-

Use of Packages in VHDL
= A VHDL package is simply a way of

grouping a collection of related programs used in a design.
declarations that serve a common = Packages are defined in two parts:
purpose o package decl_aration - includes declaration of all
) elements defined by the package.
= Can be reused by other deSlgnS o package body : includes the implementation of all
package identifier is elements declared in the package.
) = Not all packages have bodies, sometimes body not
{package declaration} required.
end paCkage identifier; :ICYKZ?E?i;jyISSJ();img?;onday, Tuesday, Wednesday, Thursday, Friday,
urday);

END days _package;

Predefined Packages Predefined Packages
The most popular packages in VHDL are defined by = The pr?def’lned types in VHDL are stored in a
|EEE. library “std
Standard : contains all basic declarations and definitions, = Each design unit is automatically preceded by
always included by default. the following context clause
Std_logic_1 164 : contains many useful language library std, work; use std.standard.all;
extensions. package standard is
Textio : Contains definitions of all operations on texts. type boolean is (false, true); -- defined for operators =, <=,

>=, ..

To use a the std_logic_1164 package in a design unit, - ,) ,
type bitis (‘0’, “1"); -- defined for logic operations and, or,

include the following statements:

not...
library |EEE; type character is (..);
use |IEEE.std logic_1164.al; type integer is range IMPLEMENTATION_DEFINED;

subtype natural is integer range 0 to integer’ high;

For the previ in k xampl :
or the previous user defined package example use type bit_vector is array(natural range <>) of bit;

use WORK.days_packege.all; end package standard;

VHDL Libraries

= library IEEE;

= use I[EEE.numeric_bit.all;
o Types signed and unsigned
o Overloaded operators for signed and unsigned

= library IEEE;
= use |[EEE.std_logic _1164.all;
= use I[EEE.numeric_std.all;

= use |[EEE.std_logic_unsigned.all;
o Types std_logic and std_logic_vector
o Overloaded operators for signed and unsigned

Use of VHDL in Synthesis

Translates register-transfer-level (RTL) design into gate-
level netlist
VHDL was initially developed as a language for
SIMULATION

Recently being used as a language for hardware synthesis
from logic synthesis companies

o Synopsys Design Compiler, Ambit BuildGates, Mentor

Graphics Autologic, ..

Synthesis tools take a VHDL design at behavioral or
structural level and generate a logic netlist

o Minimize number of gates, delay, power, etc.

Area \

delay

Basic Design Methodology

e

ASIC or FPGA

